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The issue of time dependance
Shift symmetric Horndeski

Galileons/Horndeski rmiees: 157

What is the most general scalar-tensor theory

with second order field equations [Horndeski 19737

Horndeski has shown that the most general action with this property is

S = /d4x—g(L2+L3+L4+L5)

Ly = K(¢, X),
L3 = —G3(¢, X)de,

Ls = Ga(¢, X)R + Gax [(O6)* = (V. V.9)] |

Ls = Gs(, X) G V' V"¢ — GSX [(@)° = 306(VuVué) + 2V, Vi)’

the G; are free functions of ¢ and X = ——V“(,zﬁvﬂqb and Gix = 0G;/0X.

@ In fact same action as covariant Galileons [petfayet, Esposito-Farese, Vikman].
Galileons are scalars with Galilean symmetry for flat spacetime.
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K($,X),
= —Gs(¢, X)09,
= G4(¢, X)R + Gax [(m)2 = (VuV.9)?],

= 65(9, X) GV V76 — 22X [(O4)? ~ 304(Vu V)2 + 2V,uV o))

@ Examples: G4 =1 — R.
Gy =X — GH'V ¢V
G3 = X — "DGP" term, (V¢)2D¢ o
Gs = InX — gives GB term, G= R“”"‘BR‘LV&B —4RM Ry, + R2 { %
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L = K(¢~X)~
Ls = —Gs(¢, X)Og,

Le = Ga(¢, X)R + Gax [(O¢)* — (Vi V. 0)?]

Gy
Ls = Gs(6, X) G V¥ — =2 [(O6)° ~ 306(Vu Vo)’ +2(V4V)’]

@ Horndeski theory admits self accelerating vacua with a non trivial scalar field in
de Sitter spacetime. A subset of Horndeski theory self tunes the cosmological l

D)
constant. .
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Galileons/Horndeski rmiees: 157

Ly = K(¢, X),
L3 = —G3(¢, X)Op,
Ly = Ga(¢, X)R + Gax [(06)* — (V. Vu0)?] ,

Ls = Gs(¢,X) G V# V¥ ¢ — % [(09)? - 306(V .V 8)? +2(V,uVu9)?]

@ Generically ST or SA vacua acquire a non trivial scalar field with flat or de Sitter
metric. l%’
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Galileons/Horndeski rmiees: 157

Su = /dAX\/ —g(La+ L3+ La + Ls)

= K(¢’ X)H
—G3(¢, X))o,

Ga(6, X)R + Gax [(O9)* ~ (VuVw)’] .

&
Ls = Gs(¢h, X) G VHV" ¢ — %X [(06)® — 306(V,. V. )% + 2(V,u V. 6)*]

@ This brings up the issue of time dependance which will be crucial for black holes. l

190
5

C. Charmousis Black holes in scalar tensor and vector tensor theories



Introduction: Horndeski theory basics

The issue of time dependance
Shift symmetric Horndeski

Self tuning in Horndeski theory

Starting from Horndeski theory with a cosmological constant,
Find the most general scalar-tensor theory with self-tuning property:
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The issue of time dependance
Shift symmetric Horndeski

Self tuning in Horndeski theory

Starting from Horndeski theory with a cosmological constant,

Find the most general scalar-tensor theory with self-tuning property:

-Admitting flat space time solution with a non trivial scalar

-For an arbitrary cosmological constant that is allowed to change in time (as a step
function...)

-Without fine tuning the parameters of the theory.
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The issue of time dependance
Shift symmetric Horndeski

Self tuning in Horndeski theory

Starting from Horndeski theory with a cosmological constant,

-Admitting flat space time solution with a non trivial scalar

-For an arbitrary cosmological constant that is allowed to change in time (as a step
function...)

-Without fine tuning the parameters of the theory.

v/ —&Viohn(¢)G"'V 6V &
\ _gvpaul(¢)(*R*)“V v;lév() @vvvﬁ(?

/& Veeorge(9)R
\/z Vringo (O) G

Fab 4 terms
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The issue of time dependance
Shift symmetric Horndeski

Self tuning in Horndeski theory

Starting from Horndeski theory with a cosmological constant,

AV ohn(Cb G'L“/V#CDV ¢
v *ngau/(é)(*R*)‘“’“‘ VupVadViV

\/ —& Veeorge(#)R
\V4 _eril1go(¢)G

Fab 4 terms

@ All are scalar-curvature interaction terms stemming from Lovelock theory. They
are the unique interaction terms yielding second order field equations.

@ Theory depends on 4 arbitrary potentials V = Vipq (o).

@ Fab 4 terms can self-tune the cosmological constant for flat spacetime. At the
absence of curvature Fab 4 terms drop out. l%j

@ Adding a standard kinetic term self tunes to de Sitter [ubitosy, Linder] ‘\
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The issue of time dependance
0 ski

Example self tuning solution

Consider a slowly varying scalar field in the presence of an arbitrary cc in a time
evolving universe,

2
@ Flat spacetime: Milne metric ds? = —dT? + T2 (% s X2dQ2)
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The issue of time dependance
Shift symmetric Horndeski

Example self tuning solution

Consider a slowly varying scalar field in the presence of an arbitrary cc in a time
evolving universe,
2
@ Flat spacetime: Milne metric ds? = —dT? + T2 (% s X2dQ2)
@ For simplicity take analytic expansion:

1
Vjohn = C:/ s Vpaul S Cp 5 Vgeorge = Cg + C; (15) Vringo =G+ Crl ¢ - ZCJ ¢2
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The issue of time dependance
Shift symmetric Horndeski

Example self tuning solution

Consider a slowly varying scalar field in the presence of an arbitrary cc in a time
evolving universe,

2
@ Flat spacetime: Milne metric ds? = —dT? + T2 (% s X2dQ2)
@ For simplicity take analytic expansion:

1
Vjohn = C:/ s Vpaul S Cp 5 Vgeorge = Cg + C; (15) Vringo =G+ Crl ¢ - ZCJ ¢2

@ Friedmann equation reads,
¢j(¢H)* — cp(dH)® — cz(¢H) +pr =0
with matter source pp = A, vacuum cosmological constant. Note that ¢pH
appear as homogeneous powers of time...
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The issue of time dependance
Shift symmetric Horndeski

Example self tuning solution

Consider a slowly varying scalar field in the presence of an arbitrary cc in a time
evolving universe,

2
@ Flat spacetime: Milne metric ds? = —dT? + T2 (% s X2dQ2)
@ For simplicity take analytic expansion:

1
Vjohn = C:/ s Vpaul S Cp 5 Vgeorge = Cg + C; (15) Vringo =G+ Crl ¢ - ZCJ ¢2

@ Friedmann equation reads,
¢j(¢H)* — cp(dH)® — cz(¢H) +pr =0
with matter source pp = A, vacuum cosmological constant. Note that ¢pH
appear as homogeneous powers of time...

@ Hence since H = 1/t for Milne, taking ¢ = ¢ + ¢1 T? gives
ci(#1)? — cp(¢1)® — c;(qbl) + pa = 0 an algebraic constraint.

9
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The issue of time dependance
Shift s etric Horndeski

Example self tuning solution

Consider a slowly varying scalar field in the presence of an arbitrary cc in a time
evolving universe,

2
@ Flat spacetime: Milne metric ds? = —dT? + T2 (% s X2dQ2)

@ For simplicity take analytic expansion:

1
Vjohn = C:/ s Vpaul S Cp 5 Vgeorge = Cg + C; (15) Vringo =G+ Crl ¢ - ZCJ ¢2

@ Friedmann equation reads,
6j(#H)? = cp(¢H)* — cg(éH) + pa =0
with matter source pp = A, vacuum cosmological constant. Note that ¢pH
appear as homogeneous powers of time...
@ Hence since H = 1/t for Milne, taking ¢ = ¢ + ¢1 T? gives
ci(#1)? — cp(¢1)® — c;(qbl) + pa = 0 an algebraic constraint.

@ Integration constant ¢; is fixed by the cosmological constant for arbitrary values
of the theory potentials.

9
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The issue of time dependance
Shift s etric Horndeski

Example self tuning solution

Consider a slowly varying scalar field in the presence of an arbitrary cc in a time
evolving universe,

2
@ Flat spacetime: Milne metric ds? = —dT? + T2 (% s X2dQ2)

@ For simplicity take analytic expansion:

1
Vjohn = C:/ s Vpaul S Cp 5 Vgeorge = Cg + C; (15) Vringo =G+ Crl ¢ - ZCJ ¢2

@ Friedmann equation reads,
6j(#H)? = cp(¢H)* — cg(éH) + pa =0
with matter source pp = A, vacuum cosmological constant. Note that ¢pH
appear as homogeneous powers of time...
@ Hence since H = 1/t for Milne, taking ¢ = ¢ + ¢1 T? gives
ci(#1)? — cp(¢1)® — c;(qbl) + pa = 0 an algebraic constraint.

@ Integration constant ¢; is fixed by the cosmological constant for arbitrary values
of the theory potentials.

@ Going to spherically symmetric coords scalar is space and time dependent! Same l D)
holds for De Sitter self tuning... \%
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The issue of time dependance
Shift s etric Horndeski

Example self tuning solution

Consider a slowly varying scalar field in the presence of an arbitrary cc in a time
evolving universe,

2
@ Flat spacetime: Milne metric ds? = —dT? + T2 (% s X2dQ2)

@ For simplicity take analytic expansion:

1
Vjohn = C:/ s Vpaul S Cp 5 Vgeorge = Cg + C; (15) Vringo =G+ Crl ¢ - ZCJ ¢2

@ Friedmann equation reads,
¢j(¢H)* — cp(dH)® — cz(¢H) +pr =0
with matter source pp = A, vacuum cosmological constant. Note that ¢pH
appear as homogeneous powers of time...
@ Hence since H = 1/t for Milne, taking ¢ = ¢ + ¢1 T? gives
ci(#1)? — cp(¢1)® — c;(qbl) + pa = 0 an algebraic constraint.
@ Integration constant ¢; is fixed by the cosmological constant for arbitrary values
of the theory potentials.

@ Going to spherically symmetric coords scalar is space and time dependent! Same l D)
holds for De Sitter self tuning... \%

@ Non trivial vacua inherently demand a time dependent scalar!
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L, = K(X),
L3 = —G3(X)O9,
L4 G4(X)R aF G4X I:(D(b)z - (vu vz/@)z} ’

G
Ls = Gs(X) G V* V"¢ — =2= [(08)° — 308(V,Vu6)’ + 2V Vr0)*]

the G; are free functions of ¢ and X = —lV“(bV#(b and Gix = 0G;/0X.

2
@ Horndeski theory includes Shift symmetric theories where G;'s depend only on X
and ¢ — ¢+ c.
Associated with the symmetry there is a Noether current, J* which is conserved l p)
VudH =0. -\%

Presence of this symmetry permits a very general no hair argument
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ssue of time
Shift symmetric Horndeski

@ Even for a static spherically symmetric spacetime scalar field is to be time
dependent if we are going to be in a non trivial branch of solutions

@ Shift symmetric Horndeski theory provides a conserved Noether current.
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A no hair theorem and ways to evade it

© A no hair theorem and ways to evade it
o Conformal secondary hair?
@ No hair theorem for shift symmetric spacetimes
@ Two generic theorems
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’ Conformal secondary hair

No hair theorem
eneric theorems

Black holes have NO hair pece revies soraeizo ana gam 2015)

During gravitational collapse...
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No hair t m for shift symmet:
neric theorems

Black holes have NO hair pece revies soraeizo ana gam 2015)

During gravitational collapse...
Black holes eat or expel surrounding matter

C. Charmousis Black holes in scalar tensor and vector tensor theories



A no hair theorem and ways to evade it

ymmetric spacetimes
neric theorems

Black holes have NO hair pece revies soraeizo ana gam 2015)

During gravitational collapse...
Black holes eat or expel surrounding matter
their stationary phase is characterized by a limited number of charges
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nmetric spacetir
neric theorems

Black holes have NO hair pece revies soraeizo ana gam 2015)

During gravitational collapse...

Black holes eat or expel surrounding matter

their stationary phase is characterized by a limited number of charges
and no details
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nmetric spacetir
neric theorems

Black holes have NO hair pece revies soraeizo ana gam 2015)

During gravitational collapse...

Black holes eat or expel surrounding matter

their stationary phase is characterized by a limited number of charges
and no details

black holes are bald...
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Conform ondary hair?
No h r shift symmetri
seneric theorems

Black holes have NO hair pece revies soraeizo ana gam 2015)

During gravitational collapse...

Black holes eat or expel surrounding matter

their stationary phase is characterized by a limited number of charges
and no details

black holes are bald...

No hair arguments/theorems dictate under some reasonable hypotheses that adding

degrees of freedom lead to singular solutions...

For example in vanilla scalar-tensor theories black hole solutions are GR black holes
with constant scalar.
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Black holes have NO hair pece revies soraeizo ana gam 2015)

During gravitational collapse...

Black holes eat or expel surrounding matter

their stationary phase is characterized by a limited number of charges
and no details

black holes are bald...

No hair arguments/theorems dictate under some reasonable hypotheses that adding

degrees of freedom lead to singular solutions...

For example in vanilla scalar-tensor theories black hole solutions are GR black holes
with constant scalar.

Warning : beyond GR Birkhoff's theorem is not valid.
Spherical symmetry thus does not guarantee staticity.
Scalar tensor black holes radiate monopole gravity waves.
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Conform ondary hair?
No h r shift symmetri
seneric theorems

Black holes have NO hair pece revies soraeizo ana gam 2015)

During gravitational collapse...

Black holes eat or expel surrounding matter

their stationary phase is characterized by a limited number of charges
and no details

black holes are bald...

No hair arguments/theorems dictate under some reasonable hypotheses that adding

degrees of freedom lead to singular solutions...

For example in vanilla scalar-tensor theories black hole solutions are GR black holes
with constant scalar.

Warning : beyond GR Birkhoff's theorem is not valid.

Spherical symmetry thus does not guarantee staticity.

Scalar tensor black holes radiate monopole gravity waves.

There is no reason for metric and scalar not to radiate for spherical symmetry
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symmetric spacetim

Example: BBMB solution

@ Consider a conformally coupled scalar field ¢:

R 1. ... 1._
5[guu:¢y¢]:/ vV & (mféaoéa ¢ — ER(D2) d*x + Smlguv, V]
M
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0 hair theorem and ways to evade it Conformal secondary hair?

) r theorem for shift symmetric space
T eneric theorems

Example: BBMB solution

@ Consider a conformally coupled scalar field ¢:

R 1. ... 1._
S[E;w,(b,lﬁ]:/ vV & (m*iaaéa ¢ — ER(Dz) d*x + Smlguv, V]
M

@ Invariance of the EOM of ¢ under the conformal transformation

8ap é—a[ﬁ = ngaﬁ
o d=0""¢

9
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o hair theorem and ways to evade it Conformal secondary hair?

\Le eorem for shift symmetric spacetimes
neric theorems

Example: BBMB solution

@ Consider a conformally coupled scalar field ¢:

Slguv, ¢, %] = / \Vam 16 G > O‘DOQO RO )d4x+5m[gm,,¢] J

@ Invariance of the EOM of ¢ under the conformal transformation

8ap é—a[ﬁ = ngaﬁ
pd=Q"1¢
@ There exists a black hole geometry with non-trivial scalar field and secondary

black hole hair.
The BBMB solution [N. Bocharova et al.-70 , J. Bekenstein-74 ]

9
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The BBMB solution [N. Bocharova et al.-70 , J.
Bekenstein-74 |

@ Static and spherically symmetric solution

2 2
2 _ ] 2 dr 2 (302 4 sin2 w2
ds _—<1—7) de? + ——— +r (d6? + sin? 6dg?)

=)

3 m
¢= \/ 4G r—m

with secondary scalar hair
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The BBMB solution [N. Bocharova et al.-70 , J.
Bekenstein-74 |

@ Static and spherically symmetric solution

ds? — — (1 _ ?)2&2 + <1dri)2 + 72 (d02 + sin? 9dap2)

with secondary scalar hair
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A no hair theorem and way: v i q
0 hair theorem and ways to evade it Conformal secondary hair?

orem for shift symmetric spacetimes
generic theorems

The BBMB solution [N. Bocharova et al.-70 , J.
Bekenstein-74 |

@ Static and spherically symmetric solution

ds? — — (1 _ ?)2&2 + <1dri)2 + 72 (d02 + sin? 9dap2)

with secondary scalar hair

@ Geometry is that of an extremal RN.
Problem:The scalar field is unbounded at (r = m).
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A no hair theorem and way: v i q
0 hair theorem and ways to evade it Conformal secondary hair?

t symmetric spacetimes

The BBMB solution [N. Bocharova et al.-70 , J.
Bekenstein-74 |

@ Static and spherically symmetric solution

ds? — — (1 _ ?)2&2 + <1dri)2 + 72 (d02 + sin? 9dap2)

with secondary scalar hair

@ Geometry is that of an extremal RN.
Problem:The scalar field is unbounded at (r = m).

@ A cosmological constant can cure this; rz) family of solutions
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A no hair theorem and way: v i q
0 hair theorem and ways to evade it Conformal secondary hair?

\Le eorem for shift symmetric spacetimes
neric theorems

The BBMB solution [N. Bocharova et al.-70 , J.
Bekenstein-74 |

@ Static and spherically symmetric solution

ds? — — (1 _ ?)2&2 + <1dri)2 + 72 (d02 + sin? 9dap2)

with secondary scalar hair

@ Geometry is that of an extremal RN.
Problem:The scalar field is unbounded at (r = m).

@ A cosmological constant can cure this; rz) family of solutions

@ Secondary hair black hole '%3

C. Charmousis Black holes in scalar tensor and vector tensor theories



A no hair theorem and way: v i q
0 hair theorem and ways to evade it Conformal secondary hair?

No hair thec for shift nmetric spacetir
T neric theorems

Summary so far

@ Vacua in Horndeski can be non trivial. Non trivial vacua lead to time dependent
scalars even for flat spacetime.

@ Time independence for spherical symmetry is not guaranteed. We dont have
Birkhoff’s theorem in scalar tensor theories

@ No hair theorems are not valid for time dependent spacetimes.
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A no hair theorem and way: v i q
0 hair theorem and ways to evade it Conformal secondary hair?

No hair thec for shift nmetric spacetimes
T neric theorems

Summary so far

@ Vacua in Horndeski can be non trivial. Non trivial vacua lead to time dependent
scalars even for flat spacetime.

@ Time independence for spherical symmetry is not guaranteed. We dont have
Birkhoff’s theorem in scalar tensor theories

@ No hair theorems are not valid for time dependent spacetimes.

Let us now look at a specific no hair theorem for static and spherically symmetric

spacetimes...

...and shift symmetric theories
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No hair theorem for shift symmetric spacetimes
generic theorems

Nicolis] [Sotiriou, Zhou] [Babichev, CC, Lehébel]

Consider shift symmetric Horndeski theory with Gy, G3, Ga, Gs arbitrary functions of
X. We have a Noether current J* which is conserved, V,J* = 0.
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’ Conformal secondary hair?

No hair theorem for shift symmetric spacetimes
generic theorems

NO ha|r [Hui, Nicolis] [Sotiriou, Zhou] [Babichev, CC, Lehébel]

Static no hair the

Consider shift symmetric Horndeski theory with Gy, G3, Ga, Gs arbitrary functions of
X. We have a Noether current J* which is conserved, V,J* = 0.
We now suppose that:

© spacetime and scalar are spherically symmetric and static,

d 2
ds? = —h(r)dt2 + = 4 2dK?, ¢ = é(r)
f(r)
@ spacetime is asymptotically flat, ¢’ — 0 as r — co and the norm of the current
J? is finite on the horizon,

© there is a canonical kinetic term X in the action,

@ and the G; functions are such that their X-derivatives contain only positive or
zero powers of X.

Under these hypotheses, ¢ is constant and thus the only black hole solution is locally
isometric to Schwarzschild.
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No hair theorem for shift symmetric spacetimes
> generic theorems

NO ha|r [Hui, Nicolis] [Sotiriou, Zhou] [Babichev, CC, Lehébel]

Static no hair the

Consider shift symmetric Horndeski theory with Gy, G3, Ga, Gs arbitrary functions of
X. We have a Noether current J* which is conserved, V,J* = 0.
We now suppose that:

© spacetime and scalar are spherically symmetric and static,

dr?

ds? = —h(r)dt? + — + r?dK?, ¢ = &(r)

f(r)

@ spacetime is asymptotically flat, ¢’ — 0 as r — co and the norm of the current
J? is finite on the horizon,

© there is a canonical kinetic term X in the action,

@ and the G; functions are such that their X-derivatives contain only positive or
zero powers of X.

Under these hypotheses, ¢ is constant and thus the only black hole solution is locally
isometric to Schwarzschild.

(

Most interesting part of no go theorem: Breaking any of these hypotheses leads to l%ﬂ
black hole solutions! .\

Theorem can be extended for star solutions. [Lensbel et al.]

C. Charmousis Black holes in scalar tensor and vector tensor theories



A no hair theorem and ways to evade it : )
? Conformal secondary hair

No hair theorem for shift symmetric spacetimes
eneric theorems

Hair versus no hair g weewey

Shift-symmetric
Horndeski theories

Gi(X)

Gix contains Gix contains ne-
only positive gative powers of X
powers of X

g #0 ¢g=0 ‘ J=0 J£ 0
John, Op(d¢)? } v eg.Gs D V=X a¢G & G5 =
No asymp- Asymptotic : e
c.g. Babichev ef al., Pty e . Babichev et al. abnlpy|
Kobayashi et al. Stealth So hou

Schwarzschild black hole

T I, I No kinetic term Kinetic term
et al., Minamitsuji

Gax =0, Gaxx =0 Everything else

Babichev et al. Stealth Hui-Nicolis theorem
solutions (2 Kerr)
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A no hair theorem and ways to evade it

Conformal second
No hair theorem for shift symmetric spacetimes
neric theorems

oducing time dependence, g # 0

Spherical symmetry certainly does not impose staticity. In fact no hair theorems may
be pointing out to an inconsistency in this direction.
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No hair theorem for shift symmetric spacetimes
neric theorems

Introducing time dependence, g # 0

Spherical symmetry certainly does not impose staticity. In fact no hair theorems may
be pointing out to an inconsistency in this direction.

@ Furthermore, for self accelerating or self tuning solutions one has a time
dependence for the scalar in FRW coordinates
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No hair theorem for shift symmetric spacetimes

neric theorems

Introducing time dependence, g # 0

Spherical symmetry certainly does not impose staticity. In fact no hair theorems may
be pointing out to an inconsistency in this direction.
@ Furthermore, for self accelerating or self tuning solutions one has a time
dependence for the scalar in FRW coordinates
@ In spherical symmetry this leads to a time and radially depending scalar already
for flat spacetime.
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M Conformal second

No hair theorem ft symmetric spacetimes
generic theorems

Introducing time dependence, g # 0

Spherical symmetry certainly does not impose staticity. In fact no hair theorems may
be pointing out to an inconsistency in this direction.

@ Furthermore, for self accelerating or self tuning solutions one has a time
dependence for the scalar in FRW coordinates

@ In spherical symmetry this leads to a time and radially depending scalar already
for flat spacetime.

@ So let us allow time dependence for the scalar as a first step while keeping for a
static and spherically symmetric spacetime.

C. Charmousis Black holes in scalar tensor and vector tensor theories



A no hair theorem and ways to evade it >
M Conformal secondary hair?

No hair theorem for shift symmetric spacetimes
eneric theorems

Introducing time dependence, g # 0

Spherical symmetry certainly does not impose staticity. In fact no hair theorems may
be pointing out to an inconsistency in this direction.

@ Furthermore, for self accelerating or self tuning solutions one has a time
dependence for the scalar in FRW coordinates

@ In spherical symmetry this leads to a time and radially depending scalar already
for flat spacetime.

@ So let us allow time dependence for the scalar as a first step while keeping for a
static and spherically symmetric spacetime.

But is it consistent with respect to the field equations £, = 0, and
& =0 to do so?
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A no hair theorem and ways to evade it
? Conforr « ir?

No hair th t symmetric spacetimes
Two generic theorems

The question of time dependence, gt + ¥(r)

Consistency theorem [savichev, cc, Hassaine]

Consider an arbitrary shift symmetric Horndeski theory and a scalar-metric ansatz with
g # 0. The unique solution to the scalar field equation £; = 0 and the “matter flow”
metric equation & = 0 is given by J" = 0.

@ We are killing two birds with one stone.

@ The current now reads, J¥J, = —h(Jt)? + (J")?/f and is regular. Time
dependence renders no hair theorem irrelevant.

@ Given the higher order nature of Horndeski theory this theorem basically tells us
that if ¢ = gt + (r) then there exist ¢’ # 0 solutions to the field equations.

@ One can prove for some theories that if ¢ = ¢(t, r) then the only compatible ¢
are ¢ = qt + (r) and also ¢ = ¢1(r? — t?) for flat spacetime (Fab 4 self tuning

solution) P
O
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No hair tl m for shift symmetric spacetimes
Two generic theorems

General solution

Consider, L = R — 1(8¢)? 4+ BG""8,,$0, ¢ — 2 For static and spherically symmetric
spacetime.

The general solution of theory L for static and spherically symmetric metric and

¢ = ¢(t,r) is given as a solution to the following third order algebraic equation with
respect to 4/ k(r):

(g8)? (n 4+ %)2 = <2n +(1— 25/\)%) k(r) + Gok3/2(r) =0

All metric and scalar functions given with respect to k.
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? Conformal secondary hair

No hair tl m for shift symmetric spacetimes
Two generic theorems

General solution

Consider, L = R — 1(8¢)? 4+ BG""8,,$0, ¢ — 2 For static and spherically symmetric
spacetime.

The general solution of theory L for static and spherically symmetric metric and

¢ = ¢(t,r) is given as a solution to the following third order algebraic equation with
respect to 4/ k(r):

(g8)? (n 4+ %)2 = <2n +(1— 25/\)%) k(r) + Gok3/2(r) =0

All metric and scalar functions given with respect to k.
For general shift symmetric G, G4 the result can be extended, [kobayashi, Tanahashi]
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A no hair theorem and ways to evade it . )
? Conformal secondary hair

No hair tl m for shift symmetric spacetimes
Two generic theorems

General solution

Consider, L = R — 1(8¢)? 4+ BG""8,,$0, ¢ — 2 For static and spherically symmetric
spacetime.

The general solution of theory L for static and spherically symmetric metric and

¢ = ¢(t,r) is given as a solution to the following third order algebraic equation with
respect to 4/ k(r):

(g8)? (n 4+ %)2 = <2n +(1— 25/\)%) k(r) + Gok3/2(r) =0

All metric and scalar functions given with respect to k.
For general shift symmetric G, G4 the result can be extended, [kobayashi, Tanahashi]

Let us now give some specific examples for the different cases...
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© Constructing black hole solutions: Examples
@ "Sort of" time dependent solutions
@ Scalar non trivial dynamically
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Constructing black hole solutions: Examples ort of" time dependent solutions
r non trivial dynamically

Scalar with constant velocity g # 0

Consider the action,

S= /d‘*x, /=g [CR— 2N — 1(89) + BG" 0,60,0] ...,
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Constructing black hole solutions: Examples "Sort of" time dependent solutions
Scalar non trivial dynamically

Scalar with constant velocity g # 0

Consider the action,
S= /d‘*x, /=g [CR— 2N — 1(89) + BG" 0,60,0] ...,

@ Scalar field equation and conservation of current,

Vit =0, I = (ngh” — BG")Dug.

@ Take ds? = —h(r)dt? + fd(—’rz) + r2dQ?, and ¢ = ¢(t, r) then

9
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Constructing black hole solutions: Examples "Sort of" time dependent solutions
Scalar non trivial dynamically

Scalar with constant velocity g # 0

Consider the action,
S= /d‘*x, /=g [CR— 2N — 1(89) + BG" 0,60,0] ...,
@ Scalar field equation and conservation of current,
Yt =0, S = (ng — BG") 8,0,

@ Take ds? = —h(r)dt? + fd(—’rz) + r2dQ?, and ¢ = ¢(t, r) then

2
@ ¢ =1 + qt while & = —% — J© = 0 solves both equations...
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Constructing black hole solutions: Examples "Sort of" time dependent solutions
Scalar non trivial dynamically

Scalar with constant velocity g # 0

Consider the action,
S= /d‘*x, /=g [CR— 2N — 1(89) + BG" 0,60,0] ...,

@ Scalar field equation and conservation of current,

VudHh =0, J* = (ng"” — BG") 8.

@ Take ds? = —h(r)dt? + fd(—’rz) + r2dQ2, and ¢ = ¢(t, r) then

@ ¢ =1+ gt while & = —T— — J” = 0 solves both equations...

@ BG" —ng" =0ie. ff%ordﬂ—o

For a higher order theory J” = 0 does not necessarily imply ¢ = const.

J' = 0 means that we kill primary hair since, V,J* =0 — /—g(BG" —ng")or¢ = ¢ l
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Constructing black hole solutions: Examples "Sort of" time dependent solutions
Scalar non trivial dynamically

Scalar with constant velocity g # 0

Consider the action,
S= /d‘*x, /=g [CR— 2N — 1(89) + BG" 0,60,0] ...,

@ Scalar field equation and conservation of current,

VudHh =0, J* = (ng"” — BG") 8.

@ Take ds? = —h(r)dt? + fd(—’rz) + r2dQ2, and ¢ = ¢(t, r) then

@ ¢ =1+ gt while & = —T— — J” = 0 solves both equations...

@ BG" —ng" =0ie. ff%ordﬂ—o

For a higher order theory J” = 0 does not necessarily imply ¢ = const.

J' = 0 means that we kill primary hair since, V,J* =0 — /—g(BG" —ng")or¢ = ¢ l

@ We now solve for the remaining field egs...
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r non trivial dynamically

Solving the remaining EoM

@ From (rr)-component get v’

’_ Vr 2 20/
W =t (42808 + )

1/2

Sy
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Constructing black hole solutions: Examples of" time dependent solutions
r non trivial dynamically

Solving the remaining EoM

@ From (rr)-component get v’

1/2
= \/F ( 2 + r2 n — h2r2 /) .
P WE+ o B(B +mnr) 7 (h°r)
@ and finally (tt)-component gives h(r) via,
o1 k(r)
h(r)=—-=+ - d
(r) r + r B+ nr? &

with
BB +1r?)? — (208 + (Cn — BA) %) k+ Gok3/2 =0,

Any solution to the algebraic eq for k = k(r) gives full solution to the system!

C. Charmousis Black holes in scalar tensor and vector tensor theories



Constructing black hole solutions: Examples of" time dependent solutions
r non trivial dynamically

Solving the remaining EoM

@ From (rr)-component get v’

1/2
= \/F ( 2 + r2 n — h2r2 /) .
P WE+ o B(B +mnr) 7 (h°r)
@ and finally (tt)-component gives h(r) via,
o1 k(r)
h(r)=—-=+ - d
(r) r + r B+ nr? &

with
BB +1r?)? — (208 + (Cn — BA) %) k+ Gok3/2 =0,

Any solution to the algebraic eq for k = k(r) gives full solution to the system!

5
Lets take n = A =0 %
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ar non trivial dynamically

Asymptotically flat limit : A=0,n=0

® Consider S = [ d*x/=g [(R + BGH" 0,60, ¢]
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Constructing black hole solutions: Examples ort of" time dependent solutions
r non trivial dynamically

Asymptotically flat limit : A=0,n=0

® Consider S = [ d*x/=g [(R + BGH" 0,60, ¢]

@ Algebraic equation to solve: g233 — 2¢Sk + Cok3/2 = 0 — k = constant!
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Constructing black hole solutions: Examples "Sort of" time dependent solutions
Scalar non trivial dynamically

Asymptotically flat limit : A=0,n=0

® Consider S = [ d*x/=g [(R + BGH" 0,60, ¢]
@ Algebraic equation to solve: g233 — 2¢Sk + Cok3/2 = 0 — k = constant!

@ f(r)=h(r)=1—p/r

@ ¢r =qttqu {2\/54- log \ﬁ;%} + ¢o...
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Constructing black hole solutions: Examples "Sort of" time dependent solutions
Scalar non trivial dynamically

Asymptotically flat limit : A=0,n=0

® Consider S = [ d*x/=g [(R + BGH" 0,60, ¢]

@ Algebraic equation to solve: g233 — 2¢Sk + Cok3/2 = 0 — k = constant!
@ f(r)=h(r)=1—p/r

@ ¢r =qttqu {2\/54- log \ﬁ;%} + ¢o...

® Consider v =t + [(fh)~1/2dr then ds> = —hdv? + 2,/ h/f dvdr + r2dQ?
Regular chart for horizon, EF coordinates
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Constructing black hole solutions: Examples "Sort of" time dependent solutions
Scalar non trivial dynamically

Asymptotically flat limit : A=0,n=0

® Consider S = [ d*x/=g [(R + BGH" 0,60, ¢]
@ Algebraic equation to solve: g233 — 2¢Sk + Cok3/2 = 0 — k = constant!
@ f(r)=h(r)=1—p/r

@ ¢r =qttqu {2\/54- log \ﬁ;%} + ¢o...

® Consider v =t + [(fh)~1/2dr then ds> = —hdv? + 2,/ h/f dvdr + r2dQ?
Regular chart for horizon, EF coordinates

@ ¢ =g {v—r+2‘/ur—2ulog (\/%—f—l)} + const

@ Scalar regular at future black hole horizon.
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Constructing black hole solutions: Examples "Sort of" time dependent solutions
Scalar non trivial dynamically

Asymptotically flat limit : A=0,n=0

® Consider S = [ d*x/=g [(R + BGH" 0,60, ¢]

@ Algebraic equation to solve: g233 — 2¢Sk + Cok3/2 = 0 — k = constant!
f(ry=h(r)=1—p/r

° ¢i—qtiqu{ V& +log f+f} + ...

® Consider v =t + [(fh)~1/2dr then ds> = —hdv? + 2,/ h/f dvdr + r2dQ?
Regular chart for horizon, EF coordinates

@ ¢ =g [v—r+2‘/ur—2ulog (\/%—f—l)} + const

@ Scalar regular at future black hole horizon.

Schwarzschild geometry with a non-trivial regular scalar field.

Exterior geometry for star '%j
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Constructing black hole solutions: Examples ort of" time dependent solutions

ar non tri dynamically

Star SO|Ut|OnS [Cisterna, Delsate, Rinaldi], [Maselli, Silva, Minamitsuji, Berti]

® Consider S = [ d*x\/=g [(R + BGH",,¢0,¢]

MMsun]
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Constructing black hole solutions: Examples Sort of" time dependent solutions
r non trivial dynamica

Star SO|Ut|OnS [Cisterna, Delsate, Rinaldi], [Maselli, Silva, Minamitsuji, Berti]

® Consider S = [ d*x\/=g [(R + BGH",,¢0,¢]

@ Take stealth solution for exterior and consider PF matter for interior with p and
P that does not couple to scalar.
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Constructing black hole solutions: Examples Sort of" time dependent solutions
r non trivial dynamica

Star SO|Ut|OnS [Cisterna, Delsate, Rinaldi], [Maselli, Silva, Minamitsuji, Berti]

® Consider S = [ d*x\/=g [(R + BGH",,¢0,¢]

@ Take stealth solution for exterior and consider PF matter for interior with p and
P that does not couple to scalar.

@ J' =0, and therefore G = 0 which effects star interior.
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Constructing black hole solutions: Examples of" time dependent
Scalar non trivial dynamic:

Star SO|Ut|OnS [Cisterna, Delsate, Rinaldi], [Maselli, Silva, Minamitsuji, Berti]

Consider S = [ d*x\/=g[¢R + G 0,,¢0,¢]

Take stealth solution for exterior and consider PF matter for interior with p and
P that does not couple to scalar.

J" =0, and therefore G = 0 which effects star interior.
For fixed star radius 8 > 0 (8 < 0) gives heavier (lighter) stars than GR.
No GR limit for ¢ — 0

— 0016
0.032
0.048 7

— 0.064

— 0.08
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Constructing black hole solutions: Examples ort of" time dependent solutions
r non trivial dynamically

@ Horndeski theory admits ST and SA vacua that naturally lead to a softly time
dependent scalar.

@ Shift symmetry permits the existence of a no hair theorem valid for static
configurations that allows to construct hairy black holes.

Need more work on time dependent metrics.
Higher order Horndeski terms permit novel branches of solutions

Time dependent scalars permit regularity on the black hole horizon

We constructed a simple stealth Schwarzschild black hole that leads to well
defined star solutions distinct from GR
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Constructing black hole solutions: Examples "Sort of" time dependent solutions
Scalar non trivial dynamically

Self tuning de Sitter black hole

S= /d4x1 /—g [gR —2A — 0 (8¢)? + BGH¥ 8, (w,,(@

BB+ 1) — (208 + (¢n — BA) ) k + Gok¥/2 =0
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Constructing black hole solutions: Examples "Sort of" time dependent solutions
Scalar non trivial dynamically

Self tuning de Sitter black hole

S= /d4x1 /—g [gR —2A — 0 (8¢)? + BGH¥ 8, (pe),,qb}

BB +nr?)? — (2B + (Cn — BA) ) k + Gok3/2 =0

@ f=h=1-L+ %ﬂ de Sitter Schwarzschild!

@ ¢/ =+7V1—hand ¢(t,r) =qt+(r)

9
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Constructing black hole solutions: Examples "Sort of" time dependent solutions
Scalar non trivial dynamically

Self tuning de Sitter black hole

S= /d4x1 /—g [gR —2A — 0 (8¢)? + BGH¥ 8, (w,,(@

PB(B+nr?)? — (2B + (Cn — BA) r?) k+ Cok3/2 =0
@ f=h=1-L+ %ﬂ de Sitter Schwarzschild!

=+9yT—hand ¢(t,r) = qt+(r)

The effective cosmological constant is not the vacuum cosmological constant. In
fact,

Self tuning relation : g?n =A— Agr >0

@ Hence for any A > A fixes g, integration constant.
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Constructing black hole solutions: Examples "Sort of" time dependent solutions
Scalar non trivial dynamically

Self tuning de Sitter black hole

S= /d4x1 /—g [gR —2A — 0 (8¢)? + BGH¥ 8, (pe),,qb}

o @B(B+nr)? — (208 + (¢n— BA) r?) k + Cok®/2 = 0
@ f=h=1-L+ %ﬂ de Sitter Schwarzschild!
@ ¢/ =+3V1—hand ¢(t,r) = qt+(r)

@ The effective cosmological constant is not the vacuum cosmological constant. In
fact,

@ Self tuning relation : g?n=A —Aggr >0
@ Hence for any A > A fixes g, integration constant.

@ where Aefr = —% is fixed by effective theory.
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Constructing black hole solutions: Examples ort of" time dependent solutions
r non trivial dynamically

Self tuning de Sitter black hole

S= /d4x1 /—g [gR —2A — 0 (8¢)? + BGH¥ 8, (w,,(@

BB+ 1) — (208 + (¢n — BA) ) k + Gok¥/2 =0
@ f=h=1-L+ %ﬂ de Sitter Schwarzschild!
@ ¢/ =+3V1—hand ¢(t,r) = qt+(r)

@ The effective cosmological constant is not the vacuum cosmological constant. In
fact,

Self tuning relation : g?n =A— Agr >0
Hence for any A > A fixes g, integration constant.

where Aefr = —% is fixed by effective theory.

Solution hides vacuum cosmological constant leaving a smaller effective
cosmological constant [cubitosi, Linder] l%j
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Constructing black hole solutions: Examples "Sort of" time dependent solutions
Scalar non trivial dynamically

Hair versus no hair g

Shift-symmetric
Horndeski theories

Gix contains ne-
only po gative powers of X

powers of X

q#0 =0 ‘ J=0 T A0
John, Op(9¢)? . ) eg. Gy D V=X agl & G5 =
- No asymp- Asymptotic el
¢.g. Babichev et al., totic flatness Hatness Babichev et al. —4aln|X]

Kobayashi et al. Stealth Sotiriou-Zhou

Schwarzschild black hole

T I, I No kinetic term Kinetic term
et al., Minamitsuji

Gix =0,Gixx =0 Everything else

Babichev et al. Stealth Hui-Nicolis theorem
solutions (2 Kerr)
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Constructing black hole solutions: Examples "Sort of" time endent solutions

d
Scalar non trivial dynamically

The special case of the Gauss-Bonnet invariant

[Sotiriou, Zhou] [Duncan et.al] [Mavromatos et.al]

The Gauss-Bonnet term, G = R#VefB Ruvap — 4R*Y Ruy + R?, is a topological
invariant in 4 dimensions.

Variation with respect to the metric gives the 4 dim Lovelock identity,

Hpy = —2P,cge Ry, %% + 822G = 0.
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Scalar non trivial dynamically

The special case of the Gauss-Bonnet invariant

[Sotiriou, Zhou] [Duncan et.al] [Mavromatos et.al]

The Gauss-Bonnet term, G = RHVe5 Ruvap — 4R*Y Ruy + R2, is a topological
invariant in 4 dimensions.
If we couple to scalar then ¢G ceases to be trivial.
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Scalar non trivial dynamically

The special case of the Gauss-Bonnet invariant

[Sotiriou, Zhou] [Duncan et.al] [Mavromatos et.al]

The Gauss-Bonnet term, G = RHVe5 Ruvap — 4R*Y Ruy + R2, is a topological
invariant in 4 dimensions.

If we couple to scalar then ¢G ceases to be trivial.

It can be obtained in Horndeski theory via Gs ~ In X
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Constructing black hole solutions: Examples "Sort of" time de
Scalar non trivial dynamically

The special case of the Gauss-Bonnet invariant

[Sotiriou, Zhou] [Duncan et.al] [Mavromatos et.al]

The Gauss-Bonnet term, G = RnveB Ruvap — 4R*Y Ruy + R2, is a topological
invariant in 4 dimensions.

If we couple to scalar then ¢G ceases to be trivial.

It can be obtained in Horndeski theory via Gs ~ In X

The theory

R 1 .
LCB = 5 EVMQSV“QS—',- apG

is non trivial and shift symmetric. Here, G (is independent of ¢) and acts as a source
to the scalar which cannot be set to zero.

@ Op+aG=0
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Constructing black hole solutions: Examples "Sort of" time dependent solutions
Scalar non trivial dynamically

The special case of the Gauss-Bonnet invariant

[Sotiriou, Zhou] [Duncan et.al] [Mavromatos et.al]

The Gauss-Bonnet term, G = RHv5 Ruvag — 4R*Y Ruu + R2, is a topological
invariant in 4 dimensions.

If we couple to scalar then ¢G ceases to be trivial.

It can be obtained in Horndeski theory via Gs ~ In X

The theory

R 1 R
£GB::E——§VH¢V“¢+a¢G

is non trivial and shift symmetric. Here, G (is independent of ¢) and acts as a source
to the scalar which cannot be set to zero.

@ p+aG=0

@ Numerical solution can be found where the scalar and mass integration constants
are fixed so that the solution is regular at the horizon.

C. Charmousis Black holes in scalar tensor and vector tensor theories



Constructing black hole solutions: Examples "Sort of" time de
Scalar non trivi

The special case of the Gauss-Bonnet invariant

[Sotiriou, Zhou] [Duncan et.al] [Mavromatos et.al]

The Gauss-Bonnet term, G = RHv5 Ruvag — 4R*Y Ruu + R2, is a topological
invariant in 4 dimensions.

If we couple to scalar then ¢G ceases to be trivial.

It can be obtained in Horndeski theory via Gs ~ In X

The theory

R 1 R
£GB::E——§VH¢V“¢+a¢G

is non trivial and shift symmetric. Here, G (is independent of ¢) and acts as a source
to the scalar which cannot be set to zero.

@ p+aG=0

@ The mass of the black hole has a minimal size fixed by the GB coupling a. The
singularity is attained at positive r.
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Scalar non trivial dynamically

The special case of the Gauss-Bonnet invariant

[Sotiriou, Zhou] [Duncan et.al] [Mavromatos et.al]

The Gauss-Bonnet term, G = RuveB R#,,Qﬁ —4RMY R, + R?is a topological
invariant in 4 dimensions.

If we couple to scalar then d)@ ceases to be trivial.

It can be obtained in Horndeski theory via Gs ~ In X

The theory

R 1 »
£GB — 5 5va“(zwr apG

is non trivial and shift symmetric. Here, G (is independent of ¢) and acts as a source
to the scalar which cannot be set to zero.

@ Op+abG=0

@ The solution has infinite current norm at the horizon because J" # 0
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Constructing black hole solutions: Examples "Sort of" time deper solutions
I

Scalar non trivial dynamically

The special case of the Gauss-Bonnet invariant

[Sotiriou, Zhou] [Duncan et.al] [Mavromatos et.al]

The Gauss-Bonnet term, G = RHv5 Ruvag — 4R*Y Ruu + R2, is a topological
invariant in 4 dimensions.

If we couple to scalar then ¢G ceases to be trivial.

It can be obtained in Horndeski theory via Gs ~ In X

The theory

R 1 R
£GB::E——§VH¢V“¢+a¢G

is non trivial and shift symmetric. Here, G (is independent of ¢) and acts as a source
to the scalar which cannot be set to zero.

@ p+aG=0

@ Solutions with g # 0 and regular Noether current are in a different branch and
are singular.
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Constructing black hole solutions: Examples "Sort of" time dependent solutions
Scalar non trivial dynamically

For g # 0 we can find solutions analytically for Gy, G4 and otherwise numerically

For g = 0 we need to source the scalar field equation breaking one of the
hypotheses of the theorem [pabichev, cc, Lenebel]

@ For generic Horndeski we can use KK of known Lovelock solutions to construct
black holes [cc, couteraux, kiritsis]

@ Slow rotation gives identical correction to GR. Stationary solutions not known
except for stealth Kerr...

@ In dense matter regions how does scalar couple to matter? Neutron stars etc...
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A black hole with primary hair

@ A black hole with primary hair
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A black hole with primary hair

Conformally coupled scalar field

@ Consider a conformally coupled scalar field ¢ revisited:

R 1. ... 1_
5[guu:¢y¢]:/ vV & (mféaoéa ¢ — ER(D2) d*x + Smlguv, V] J
M

9
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A black hole with primary hair

Conformally coupled scalar field

@ Consider a conformally coupled scalar field ¢ revisited:

R 1. ... 1_
5[guu:¢y¢]:/ vV & (mféaoéa ¢ — ER(D2) d*x + Smlguv, V] J
M

@ Invariance of the EOM of ¢ under the conformal transformation

8ap é—a[ﬁ = ngaﬁ
o d=0""¢

9
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A black hole with primary hair

Conformally coupled scalar field

@ Consider a conformally coupled scalar field ¢ revisited:

R 1. ... 1_
S[E;w,(b,lﬁ]:/ vV & (m*iaaéa ¢ — ER(Dz) d*x + Smlguv, V] J
M

@ Invariance of the EOM of ¢ under the conformal transformation

8ap é—a[ﬁ = ngaﬁ
pd=Q"1¢
@ There exists a black hole geometry with non-trivial scalar field and secondary

black hole hair.
The BBMB solution [N. Bocharova et al.-70 , J. Bekenstein-74 ]

9
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A black hole with primary hair

BBMB completion i, csvris, ssatomspestos ssa sousensl

@ We would like to combine the above properties in order to obtain a hairy black
hole.

@ Consider the following action, S(guv, ¢, ¥) = So + S1 where

C. Charmousis Black holes in scalar tensor and vector tensor theories



A black hole with primary hair

BBMB completion i, csvris, ssatomspestos ssa sousensl

@ We would like to combine the above properties in order to obtain a hairy black
hole.

@ Consider the following action, S(guv, ¢, ¥) = So + S1 where

' 1 1
So= | dx*\/—g {QR+ n (-5(0@)2 = EGFR)}

and
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A black hole with primary hair

BBMB completion i, csvris, ssatomspestos ssa sousensl

@ We would like to combine the above properties in order to obtain a hairy black
hole.

@ Consider the following action, S(guv, ¢, ¥) = So + S1 where

o
' 1 1
ot /=g [cR+n (5007 - #R)]
and
o
Si= [ d*\/—g (BGu VIUV'W —yTEEVEYUY YY)
where

1
TSBME — v#¢vu¢> ngaw ¢+ 35 (gWD ViV + Gu) ¢ .

o
5
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A black hole with primary hair

BBMB completion i, csvris, ssatomspestos ssa sousensl

@ We would like to combine the above properties in order to obtain a hairy black
hole.

@ Consider the following action, S(guv, ¢, ¥) = So + S1 where

ot /=g [cR+n (5007 - #R)]

and

Si= [ d*\/—g (BGu VIUV'W —yTEEVEYUY YY)
where
1
TSBME — v#¢vu¢> ngaw ¢+ 35 (gWD ViV + Gu) ¢ .

@ Scalar field equation of S contains metric equation of Sp.

-
Vudt =0, = (BGu —yTEEME) v v . .\)j
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A black hole with primary hair

Black hole with primary hair

@ Solve as before assuming linear time dependence for W
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Black hole with primary hair

@ Solve as before assuming linear time dependence for W

@ Scalar ¢ has an additional branch regular at the "horizon"
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A black hole with primary hair

Black hole with primary hair

@ Solve as before assuming linear time dependence for W

@ Scalar ¢ has an additional branch regular at the "horizon"

2
m S
f(r)=h(r)=1——
(r) = h(r) Tt g
C
o(r) ==,
r
0L
mr— 135
!
—4gyX— "
Y'(r) Ay

Bn+v(a?PB—¢)=0.
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A black hole with primary hair

Black hole with primary hair

@ Solve as before assuming linear time dependence for W

@ Scalar ¢ has an additional branch regular at the "horizon"

2
m Y
f(ry=h(r)=1—- —
(r) = h(r) r+12[3,r2,
C(
o(r) ==,
r
2
Y
mr— 15
4 = 4gr+— "
P'(r) T

Bn+v(a?B—¢)=0.

@ Scalar charge ¢y playing similar role to EM charge in RN
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A black hole with primary hair

Black hole with primary hair

@ Solve as before assuming linear time dependence for W

@ Scalar ¢ has an additional branch regular at the "horizon"

2
m Y
f(r)=h(r)=1— —
(r) = h(r) r+12[3,r2,
C(
o)==,
r
2
Y
mr— 15
/ =db
P'(r) T

Bn+v(a?B—¢)=0.

@ Scalar charge ¢y playing similar role to EM charge in RN
Galileon W regular on the future horizon

dr
=qv — _ p)
voavma 1+ +/1—h(r) \3,
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Vector tensor theories

© Vector tensor theories
@ Horndeski-Maxwell theory
o Curvature as effective mass /
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Horndeski-Maxwell theory
Curvature
Vector tensor theories

A vector tensor interaction

@ Consider the following completion to Einstein Maxwell theory [sorndeski],

1
Slg, Al = / \/—gd*x [R —2A — Z]-‘z + v F v Foo P’”’””} .

19
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Vector tensor theories

A vector tensor interaction

@ Consider the following completion to Einstein Maxwell theory [sorndeski],
1 2 Wwpo
Sleg, Al = / \/—gd*x [R —2A — Z]—‘ + Y F v Fog PHYF }

@ The additional vector-curvature interaction is due to Horndeski and corrects EM
in curved spacetime.
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Vector tensor theories

A vector tensor interaction

@ Consider the following completion to Einstein Maxwell theory [sorndeski],
1 2 Wwpo
Sleg, Al = / \/—gd*x [R —2A — Z]—‘ + Y F v Fog PHYF }

@ The additional vector-curvature interaction is due to Horndeski and corrects EM
in curved spacetime.

@ The theory has U(1) symmetry
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Vector tensor theories

A vector tensor interaction

@ Consider the following completion to Einstein Maxwell theory [sorndeski],
1
Slg,Al= [ \/—gd'x [R —2A — - F? ]—"W]-‘WP/W/W:|_
[g ] / g 2 + I f

@ The additional vector-curvature interaction is due to Horndeski and corrects EM
in curved spacetime.

@ The theory has U(1) symmetry

@ In flat spacetime we have Maxwell equations
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Vector tensor theories

A vector tensor interaction

@ Consider the following completion to Einstein Maxwell theory [sorndeski],

1
Slg, Al = / \/—gd*x [R —2A — Z]-‘z + v F v Foo P’”’””} .

The additional vector-curvature interaction is due to Horndeski and corrects EM
in curved spacetime.

The theory has U(1) symmetry

In flat spacetime we have Maxwell equations

The above theory obeys Birkhoff’ s theorem

Unique such term with second order eom

but breaks EM duality. The solutions have unusual asymptotics akin to Lifschitz or
conical spacetimes '

1O
%
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Horndeski theory
Curvature as effective mass
Vector tensor theories

Einstein Proca theory

@ Consider the following tensor-vector theory,

1 2
Slg, A] = / /=g d*x {Rf 2N - %A2

9
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Horn xwell theory
Curvature as effective mass
Vector tensor theories

Einstein Proca theory

@ Consider the following tensor-vector theory,
1 u?
S[g, Al = —gd* {R72A77f27—A2.
(g, Al / \V —gd'x 7 5

@ Proca field is "Maxwell field" with mass p and no longer has U(1) gauge
symmetry.
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Horn xwell theory
Curvature as effective mass
Vector tensor theories

Einstein Proca theory

@ Consider the following tensor-vector theory,
1 u?
S[g, Al = —gd* {R72A77f27—A2.
(g, Al / \V —gd'x 7 5

@ Proca field is "Maxwell field" with mass p and no longer has U(1) gauge
symmetry.

@ No analytic RN type black hole solutions are known for the Proca field. It spoils
usual asymptotics of RN.

@ this theory is similar to a shift symmetric scalar tensor theory where V¢ — A,

9
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Horndeski theory
Curvature as effective mass
Vector tensor theories

A modified Proca theory e, e, s

@ Consider the following tensor-vector theory,
1
Slg, Al = / \/—gd*x [R —2A— Z# + BG AHA” |

@ For 3 # 0 we have a modified Maxwell theory of effective mass p with an
additional gravity-vector interaction term G, A*A”.

@ Here, mass feeds in to the photon at strong curvature. In flat spacetime we have
Maxwell equations and the field here can still be a Maxwell field.

@ It could modify predictions for cosmological magnetic fields. It is a well defined
modification of gravity.

9
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Vector tensor theories

From scalar tensor to a vector-tensor theory

@ Putting it all together,

1 2
Slg, Al = / \/—gd*x [R —2A— Zf2 = %AQ +ﬂG#,,A“A”]
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Vector tensor theories

From scalar tensor to a vector-tensor theory

@ Putting it all together,
1 u?
Slg, Al = / \/—gd*x [R —2A— Zf2 = 7A2 +BG#,,A“A”]

@ This theory is similar to the previous scalar tensor theory where V¢ — A,,.
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Vector tensor theories

From scalar tensor to a vector-tensor theory

@ Putting it all together,
1 u?
Slg, Al = / \/—gd*x [R —2A— Zf2 = 7A2 +BG#,,A“A”]

@ This theory is similar to the previous scalar tensor theory where V¢ — A,,.

@ Before we had a scalar field ¢ = gt + ¢(r). Now we have a vector with
Apdxt = a(r)dt + x(r)dr.
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Horndeski-\ heory
Curvature as effective mass
Vector tensor theories

scalar tensor to a vector-tensor theory

@ Putting it all together,
1 u?
Slg, Al = / \/—gd*x [R —2A— Zf2 = 7A2 +BG#,,A“A”]

@ This theory is similar to the previous scalar tensor theory where V¢ — A,,.

@ Before we had a scalar field ¢ = gt + ¢(r). Now we have a vector with
Apdxt = a(r)dt + x(r)dr.

@ So the velocity charge q is now replaced by an electric potential function
q — a(r) whereas V1) — x

@ x is gauge freedom for Maxwell (1 = 0) but is not gauge otherwise. So we
cannot discard it!
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Horndeski-\ heory
Curvature as effective mass
Vector tensor theories

scalar tensor to a vector-tensor theory

@ Putting it all together,
1 u?
Slg, Al = / \/—gd*x [R —2A— Zf2 = 7A2 +BG#,,A“A”]

@ This theory is similar to the previous scalar tensor theory where V¢ — A,,.

@ Before we had a scalar field ¢ = gt + ¢(r). Now we have a vector with
Apdxt = a(r)dt + x(r)dr.

@ So the velocity charge q is now replaced by an electric potential function
q — a(r) whereas V1) — x

@ x is gauge freedom for Maxwell (1 = 0) but is not gauge otherwise. So we
cannot discard it!

@ Metric field equations are the same but we now have a Proca EOM for the
vector,

HY := V,(F*) — 2 AY +28A,G* =0
!;,’
av

C. Charmousis Black holes in scalar tensor and vector tensor theories



Horndeski-\ heory
Curvature as effective mass
Vector tensor theories

scalar tensor to a vector-tensor theory

@ Putting it all together,
1 u?
Slg, Al = / \/—gd*x [R —2A— Zf2 = 7A2 +BG#,,A“A”]

@ This theory is similar to the previous scalar tensor theory where V¢ — A,,.

@ Before we had a scalar field ¢ = gt + ¢(r). Now we have a vector with
Apdxt = a(r)dt + x(r)dr.

@ So the velocity charge q is now replaced by an electric potential function
q — a(r) whereas V1) — x

@ x is gauge freedom for Maxwell (1 = 0) but is not gauge otherwise. So we
cannot discard it!

@ Metric field equations are the same but we now have a Proca EOM for the
vector,

HY := V,(F*) — 2 AY +28A,G* =0

lr%
@ It can be regarded as a modified Maxwell equation \
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Horndeski-Maxwell theory
Curvature as effective mass
Vector tensor theories

Solving the field equations

Consider spacetime,
dr?

f(r)

As before we solve for f and ... We then make the substitution,

=2, 3 K0

ds? = —h(r)dt® + +r?dQj .

b
r | wp?r2 428k

yielding at the end,

IO
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Hor theory
Curvature as effective mass
Vector tensor theories

Solving the field equations

Consider spacetime,
dr?

f(r)

As before we solve for f and ... We then make the substitution,

=2, 3 K0

r | wp?r2 428k

ds? = —h(r)dt® + +r?dQj .

yielding at the end,

2,2 4 93k ’
Wi 280 g

k(r)

:| ’ g (“2’2 +2‘BH)2 I:[(,a)l]z Gl 433)(32”/] =0

When a(r) = g we are almost back to scalar tensor '%j

C. Charmousis Black holes in scalar tensor and vector tensor theories



Horndeski-\ heory
Curvature as effective mass
Vector tensor theories

Example solutions: Solitons for § = 1/4 and adS
asymptotics

@ Integration constants, Ci, Q, @2, M

@ One can find the general solution for 8 = 1/4 and C; = 0 with spherical
symmetry

@ Regular asymptotics akin to adS spacetime and asymptotically flat solutions
(n=A=0).

@ adS solitons

9
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Horndeski theory
Curvature as effective mass
Vector tensor theories

Example solutions: 5 =1/4

Integration constants, Ci, Q, Q2, M
Fixing Ci, AdS asymptotics. Similar solution to adS Sch.
Coulomb charge Q
Q2 is like a Proca charge acting as effective curvature.
Regular soliton solution for M = 0 with adS asymptotics.
The additional "John" term regularizes asymptotics
22, 2@3u% —6u® — A om (@u? — 267 = A? arctan (v2ru)

h(r) = -+ = — s
A —2u? r V2u(N — 2p2)2 r

2, 1
0= < 2.2 Q arctan r

o = — +#Q + #
= a) = > 2

2(/\72#2) s'%\

£(r) = h(r)

r
24
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@ Similar theorem exists for neutron stars.

@ Using Lovelock solutions we can construct black holes in Horndeski theory.
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@ Starting from a no hair theorem we have seen how to construct hairy black holes.
@ Similar theorem exists for neutron stars.
@ Using Lovelock solutions we can construct black holes in Horndeski theory.

@ Many questions about stability of solutions; staticity of spacetime quite unclear
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Conclusions

Starting from a no hair theorem we have seen how to construct hairy black holes.

Similar theorem exists for neutron stars.
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@ Using Lovelock solutions we can construct black holes in Horndeski theory.

@ Many questions about stability of solutions; staticity of spacetime quite unclear
"]

Higher order terms essential for novel branches of black holes
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Starting from a no hair theorem we have seen how to construct hairy black holes.
Similar theorem exists for neutron stars.

Using Lovelock solutions we can construct black holes in Horndeski theory.
Many questions about stability of solutions; staticity of spacetime quite unclear
Higher order terms essential for novel branches of black holes

One can construct solutions with EM fields and black hole solutions with primary
hair by adding additional scalar fields
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Conclusions
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Starting from a no hair theorem we have seen how to construct hairy black holes.
Similar theorem exists for neutron stars.

Using Lovelock solutions we can construct black holes in Horndeski theory.
Many questions about stability of solutions; staticity of spacetime quite unclear
Higher order terms essential for novel branches of black holes

One can construct solutions with EM fields and black hole solutions with primary
hair by adding additional scalar fields

@ Techniques for shift symmetric Horndeski can be extended to Maxwell-Proca
theories.
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Conclusions

Slowly rotating SOIUtIONS s, siv, sasseesss, seres

Using the Hartle Thorne perturbative approximation in which frame-dragging is
assumed linear in angular velocity

d 2
?r) + r2(d6? + sin?0dp?) — 2w(r)r’sin?0dtde,
7

We get an ode to linear order:

ds® = —h(r)dt® +

2 [+ (L2

- —— )| =28X'w =0
2 \7 7 h)} AXw

which agrees with GR for X constant.

9
5

C. Charmousis Black holes in scalar tensor and vector tensor theories



Conclusions

Slowly rotating SOIUtIONS s, siv, sasseesss, seres

Using the Hartle Thorne perturbative approximation in which frame-dragging is
assumed linear in angular velocity

d 2
?r) + r2(d6? + sin?0dp?) — 2w(r)r’sin?0dtde,
7

We get an ode to linear order:

ds® = —h(r)dt® +

2 [+ (L2

- —— )| =28X'w =0
2 \7 7 h)} AXw

which agrees with GR for X constant.
What happens for X # const.
We can integrate once,

vk
4 2
A1+ 75
but, one can show by using remaining field equations that correction is always

identical to GR [Lensven]. s'%’
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